Morphology map of β -Li₃PS₄ nanocrystal by Wulff theory

UNIVERSITÀ DEGLI STUDI DI TORINO

MODALIS

<u>Naiara L. Marana^{1,*}</u>, Silvia Casassa¹, Mauro F. Sgroi², Anna Ferrari¹, and Lorenzo Maschio¹

¹Theoretical Group of Chemistry, Chemistry Department I.F.M., Torino University, Italy ²Centro Ricerche Fiat S.C.p.A., Strada Torino 50, Orbassano, 10043, Italy

*naiaraleticia.marana@unito.it

Introduction

 β -Li₃PS₄ is very applied as a solid electrolyte in lithium batteries, it is excellent ionic conductivity and is stable with a metallic lithium anode.[1] Many are studies dedicated to obtaining ideal characteristics for this material. However, as far as we know, there are no theoretical works that discuss the changes in the morphology of the β -Li₃PS₄ and its possible crystal shapes, achieved through the modifications and stabilization of its surfaces. MODALIS² is a multicountry European research program that aims to investigate new materials into nextgeneration lithium-ion batteries to integrate electric vehicles. In this sense, supported by MODALIS², this study proposes a morphology map of all crystal shapes possibilities for β -Li₃PS₄, by applying the Wulff classical theory.

Theoretical model and methodology

Results

Figure 1: Optimized Pnma structure of Li₃PS₄ with Li Wyckoff positions (4b', 4c, 4d', and 4d").

Table 1: Surfaces termination (up/down), surface energy (E_{surf} , in

	Termination	E _{surf}	E _{form}	E_{gap}
(001)	LiS ₂ /LiS ₂	2.15	31.94	1.82
(100)	LiS ₂ /LiS ₂	0.91	2.19	4.66
(010)	LiS ₂ /Li	1.83	5.16	2.70
(101)	PS ₃ /SPLi	8.20	54.10	0.46
(011)	PS ₃ /Li	1.43	5.24	4.24
(110)	SLi ₂ /Li	2.27	32.22	1.99

Figure 2:Three-dimensional maps of the electronic charge density superimposed to the electrostatic potential of β -Li₃PS₄ surfaces along z-direction: (a) (100) and (c) (011). The scale maps range from negative (-) in blue to positive (+) in red.

