
Introduction
With the considerable reduction of fossil fuels and the growing search for renewable and inexhaustible energies, research in the area of batteries

has increased in recent decades. In this context, lithium-ion batteries emerged, which are efficient, light, and safe, with good energy storage and good

stability. Widely used in small devices such as cell phones, it has also been studied for use in electric cars. However, many problems still need to be

solved for such batteries to become safe, efficient, and marketable, such as the implementation of solid electrolytes and their compatibility with

battery electrodes. MODALIS² is a transnational European research program that aims at investigating new materials for next-generation lithium-ion

batteries for electric vehicles.

Supported by MODALIS², this study aimed to investigate theoretically, through DFT the interface between the solid-state electrolyte β-Li3PS4 and

the passivating material Li2S, to analyze their compatibility.

References

Theoretical study of the interface between solid 

electrolyte and electrode: the case of (100)-Li3PS4/(110)-

Li2S
Naiara L. Marana¹,*, Silvia Casassa¹, Mauro F. Sgroi², Anna Ferrari¹, and Lorenzo 

Maschio¹
¹Theoretical Group of Chemistry, Chemistry Department I.F.M., Torino University, Italy

²Centro Ricerche Fiat S.C.p.A., Strada Torino 50, Orbassano, 10043, Italy

*naiaraleticia.marana@unito.it

Theoretical model and methodology
β-Li3PS4 = Pnma

Li2S = Fmഥ𝟑mDFT/PBE

All-electron basis-set to 

describe the atoms:

Li = 6-11G

P = 85-21d1G

S = 86-311G*

Bulk, surfaces, and

interfaces optimization

Results
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Figure 1: Interface of the (a) initial models and (b) optimized interface 

(100)-Li3PS4/(110)-Li2S
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Figure 2: Electrostatic Potential maps of the initial models (a) (100)-

Li3PS4 and (b) Li2S and (c) optimized interface (100)-Li3PS4/(110)-Li2S
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Figure 3: Projected-DOS of isolate systems (a) Li2S and (b) (100)-Li3PS4, and of the optimized interface (100)-Li3PS4/(110)-Li2S
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